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Presentation Outline

• Materials Properties for Macro Damping
– Typical algorithms and terminology

– Composites vs. metals

– Parameters influencing macrodynamic materials properties

• Toward Microdynamic Materials Properties
– Typical materials and properties for space applications

– Some empirical and anecdotal information

– Optimizing microdynamic performance

– Screening test matrix for space materials

• Microcracking as an Input Energy
– Microcracking explained /criteria

– Space composites performance

– Proposed experiments
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Damping Terminology
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Composite Materials
Internal Damping Estimates

• Probable Micro-Models for Damping
– Microplastic or viscoelastic phenomena associated with matrix

– Relative slippage at the fiber-matrix interface

• Given: Matrix damping capacity & fiber/matrix moduli:
– Can estimate internal damping of composite with known V f

• Typical levels for space structures

ξ = 0.5 to 2% critical

– Optical benches are lowest, integral, in-plane designs
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Uni-Directional Lamina
Damping Estimate
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Longitudinal Shear Specific Damping Capacity
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Transverse Specific Damping Capacity

Laminate Damping Estimates

Fiber Properties

Name:  T300                                          
Fiber Vol Fraction [%]: 55%

Fiber Longitudinal Modulus Ef [Msi]: 33

Fiber Shear Modulus Gf  [Msi]: 3.2

Matrix Properties

Name:  954-3                                          

Matrix Longitudinal Modulus Em [Msi]: 0.4

Matrix Shear Modulus Gm [Msi]: 0.148

Matrix SDC Ψm [%]: 15.00%

(SDC: Specific Damping Capacity)

Uni-Directional Lamina Damping Properties

Shear Modulus Ratio G = 21.622

Longitudinal Young's Modulus EL [Msi] = 18

(Based on rule of mixtures)

Lamina Longitudinal Tension/Compression SDC ΨL  [%] = 0.15%

Lamina Longitudinal Shear SDC ΨLT  [%] = 13.14%

Lamina Transverse Tension/Compression SDC ΨT  [%] = 9.84%

Longitudinal Tension/Compression
Lamina Critical Damping ratio ζ [%] = 0.01%
Lamina Loss Factor η = 0.02%
Lamina Quality Factor Q = 4266

Longitudinal Shear
Lamina Critical Damping ratio ζ [%] = 1.05%
Lamina Loss Factor η = 2.09%
Lamina Quality Factor Q = 48

Transverse Tension/Compression
Lamina Critical Damping ratio ζ [%] = 0.78%
Lamina Loss Factor η = 1.57%
Lamina Quality Factor Q = 64

Ref :  Adams, Robert D., “Damping Properties Analysis of Composites”, ASM International, Engineered Materials Handbook, Vol 1.
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Composite Materials Damping

• Composite material internal
damping is highly dependent on:
– Load levels (direct)
– Loading frequency (direct)
– Temperature (direct)
– Composite Material:

• Moduli (extension, shear) (ind.)

• Fiber volume fraction (ind.)

• Ply orientation (thickness?)

– Fiber drives:
• Extensional moduli

– Resin drives:
• Shear and transverse moduli

• Matrix damping capacity
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Typical Composites for
Space Structures

Structure Type Requirements Reinforcing Fibers Matrix Resin
Iso. Modulus CTE Outgas/CMEPAN- Pitch-based Type

(10E6 psi) (ppm/°C) based
1.  Zero CTE Space 12 to 16 <±0.09 Very Low M55J, 

M60J
P75, K135, 
K13710, 
XN50A

Cyanate

2.  Stiff Structure 15 to 20 -3 to +4 NASA SpecM55J, 
M60J

K135, XN50A
K13710, 
K13C, P75

Epoxy or 
Cyanate

3.  Aluminum Equivalent >10 <23 NASA SpecM40J, 
M46J

K63312 Epoxy

4.  Fabric Skins / SAS3 (Kev) to 40 ±2 NASA SpecM40J, 
M55J, 
M60J

XN50A, K13
K13C, XN70

Epoxy or 
Cyanate

• By Structural Type

• Basic Requirements

• Typical Fiber and Resin Constituents
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Internal Damping
Performance of Space

Composites

• Load levels
– Typically low (good)

• Loading Frequencies
– Structural: first modes 4 to 150 Hz, ~low (bad)

– Instrument: 100 to ? Hz for SIM, NGST, etc. (good?)

• Composite Materials for Space
– High Stiffness:  in-plane and on-axis (bad!)

– Low Stiffness:  transverse, shear moduli (good, but avoided)

– Matrix Damping Capacity:  epoxies, cyanates, VEMs (good)

– Adhesives, Bonded Joints:  continuous, but good damping
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Laminate Damping Variation
 w/ Ply Angle
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T300/954-3 [0/45/90/135] Laminate:

Ref 1

Ref :  Adams, Robert D., “Damping Properties Analysis of Composites”, ASM International, Engineered Materials Handbook, Vol 1.

? ≅ζ 0 01 10%. .  or

T300/IM8 Hybrid [0n/+45/-45/0n/...] Laminate:

? ≅ζ 0 006 0 6%. .  or
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Empirical Info on
Composites Damping

• Pitch versus PAN
– Several sporting goods references cite much better damping from

pitch-based than PAN-based fibers of the same moduli

– Could be related to higher micro-strain levels in matrices around
pitch fibers or to a difference in fiber damping capacity

• Interlayers Work
– Numerous references (AFRL SPICE program, others) have shown

visco-elastic materials (VEMs) like poyurethanes, silicones do
increase damping without hampering structural performance

• Use Materials With Hysterisis
– Early non-linearity in shear responses

– VEMs which can be engineered within the glass transition zone
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Improving Space Composite
Damping

• Extensional Moduli
– Use highly-off axis laminates

– Consider lower modulus fibers (Carbon, Glass, Kevlar)

– Design ‘soft’ boundaries / interfaces where possible

• Shear and Transverse Moduli
– Use lower modulus resins (e.g. cyanate vs. epoxy)

• Matrix Damping Capacity
– Choose resins with ‘early’ non-linear shear responses

– Use interlaminar VEMs, or resin rich layers

– Load resins with low E or high damping phases

• Other
– Choose fibers with higher damping (pitch vs. PAN ?)

– Use smaller ply thicknesses (more discreet interlaminar layers)
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Screening Matrix for
Microdynamic Properties of

Space Composites

• Parametric Test Matrix

• Choose Parameters and # of Settings
– Based on available budgets

Test Types Test Conditions Materials

Type, Settings Temps. Fibers Resins
Damping Ratio High & Low on 

Freq. & Amp.
77 K, 
300 K

M55J (78), 
K13710 (90), 
T300 (33), 
K1100 (140), 
Kevlar

Cyanate, 
Epoxy, 
Modifieds, 
VEM layers

Extensional Modulus Uni TN or CM
Shear Modulus ±45 TN, 

Iosipescu
Transverse Modulus 90° TN or CM, 

FWT
Fiber Volume 50% & 60%
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Microcracking in Space
Composites

• Will Probably Happen Due To:
– Temps below about -100°C

– Zero CTE laminates have highly negative CTE fibers

– Ply thicknesses typically 2.5 to 5 mils (64 to 127 microns)

– Current resin properties: cyanates are better, but not that
good.

• Mitigating Techniques
– Layup orientations with gradual transition

• I.e. (0,45,90, 135)XS better than (0, 90, +45, -45)XS

– Thinner plies
• 25 micron possible, but expensive and limits fiber choices

– Higher strain matrices
• Elastomer loading, high strain base resins

• VEMs like polyurethane as interlaminar layers
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Microcracking Micromechanics

Ref :  Daniel, Isaac M. and Ishai, Ori, “Engineering Mechanics of Composite Materials,” p.93

• Negative CTE of neighboring plies adds to tensile thermal
stress in resin on cool down until resin fails
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Microcracking Damage
Progression

Ref :  Daniel, Isaac M. and Ishai, Ori, “Engineering Mechanics of Composite Materials,” p. 100
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Microcracking in a Space
Composite

Cured Ply Thickness (CPT)

Resin Type / Ultimate Strain (
ULT
RESINε  )

Coefficient of Thermal Expansion (CTE) of the fiber (αFIBER)
Fiber Volume Fraction (FV)
Typical spacing between cracks = ),,,,( CPTFVf FIBER

ULT
RESIN Φαε

Typical spacing

Ply
Orientation

Φ

Material:  M55J / 934
Ply Thickness:  4.5 mils (114 microns)
Fiber Volume Fraction:  59%
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Microcracking Performance
of Space Composites

Notes:
1. P-75 laminates, (45, 0, -45, 90)3S, 60% FV, 2 in. x 2 in.
2. Cycle: -- 150°   F to +150 °  F and back @ 20°  F/min., 5 min. dwell at extremes.

3.  Data taken at 50x magnification; values are average of 0 °  normal and 90 °  normal edges.

Cracks/Inch (After No. of Cycles)Resin
System

Ply Thickness
(MILS) 0

Cycles
10

Cycles
50

Cycles
100

Cycles

934

954-3

934

954-3

5.0

5.0

2.5

2.5

3.0

0.5

0

0

33.0

4.0

2.0

0

53.5

6.5

2.5

0

56.0

10.0

3.0

0
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Proposed Microcracking
Experiments

• Create Laminates Which Will Microcrack
– M55J, (0,90)XS or (0,45,90,135)XS

– Cyanate and epoxy resins

• Monitor During Thermal Cycles
(to 196 K, ~ 20 cycles)

– CU Microdynamics Lab, or

– Adapt COI Liquid Helium CTE facility

– Acoustic emission measured

– Dynamic response measured

• Characterize:
– Frequencies

– Energy, amplitude

– Internal composite damping for microcracking input


